Towards a Research Software Categorization

Wilhelm (Willi) Hasselbring

Software Engineering http://se.informatik.uni-kiel.de

November 20th, 2023

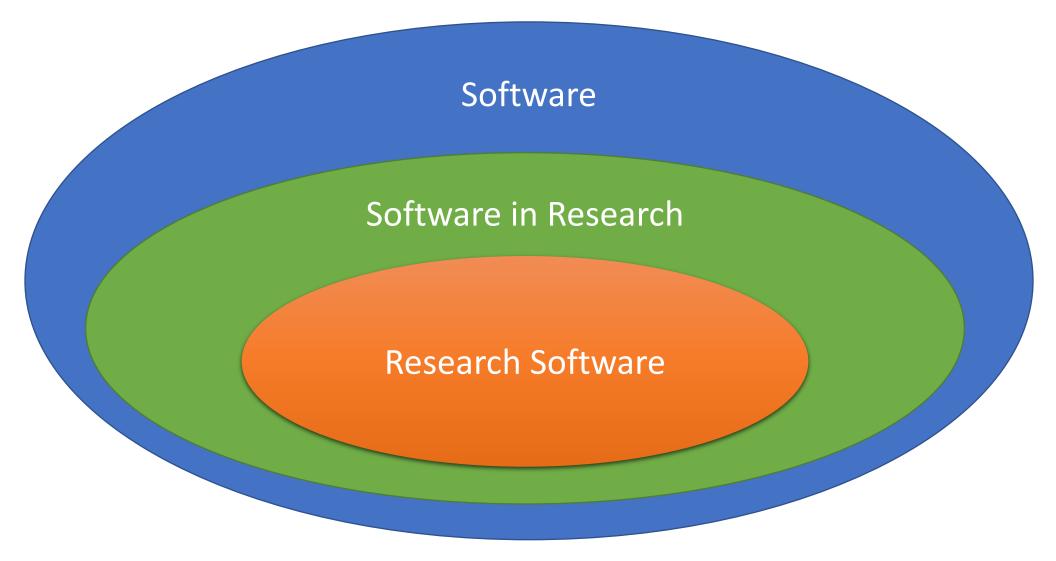
Kiel University Christian-Albrechts-Universität zu Kiel

Research Software

"Research Software includes source code files, algorithms, scripts, computational workflows and executables that were **created during the research process or for a research purpose**."

[Gruenpeter et al. 2021]

FAIR Research Software


RDA FAIR for Research Software (FAIR4RS) WG [Chue Hong et al. 2022] :

- Research software includes source code files, algorithms, scripts, computational workflows, and executables that are created **during** the research process or **for** a research purpose.
- Software components (e.g., operating systems, programming languages, libraries, etc.) that are used for research but were not created during or with a clear research intent should be considered `software in research' and not `research software'.
- Thus, research software is a separate metaphor of software in research.

Research software should be **FAIR** [Hasselbring et al. 2020b, Lamprecht et al. 2020] and **open** [Hasselbring et al. 2020a].

Software Segmentation

We intend to further categorize the orange ellipse.

Categories of Research Software

Research software mainly falls into one of the following categories (and sometimes combinations):

- **1.** Modeling, Simulation and Data Analytics of, e.g., physical, chemical, social, or biological processes in spatio-temporal contexts.
 - Numerical and agent-based modeling and simulation (in silico experiments)
 - Data-driven modeling
 - Data science and data engineering, incl. LLMs
 - Analytics pipelines
 - Data assimilation
- 2. (Embedded) Control Software for complex physical or chemical experiments and instruments, including many forms of sensor-based data collection.
- 3. Proof-of-Concept Software Prototypes in science and engineering research.
- 4. Infrastructure and platform software, such as research data and software management systems.

These categories have varying quality requirements!

5

What could we / others do with a Research Software Categorization?

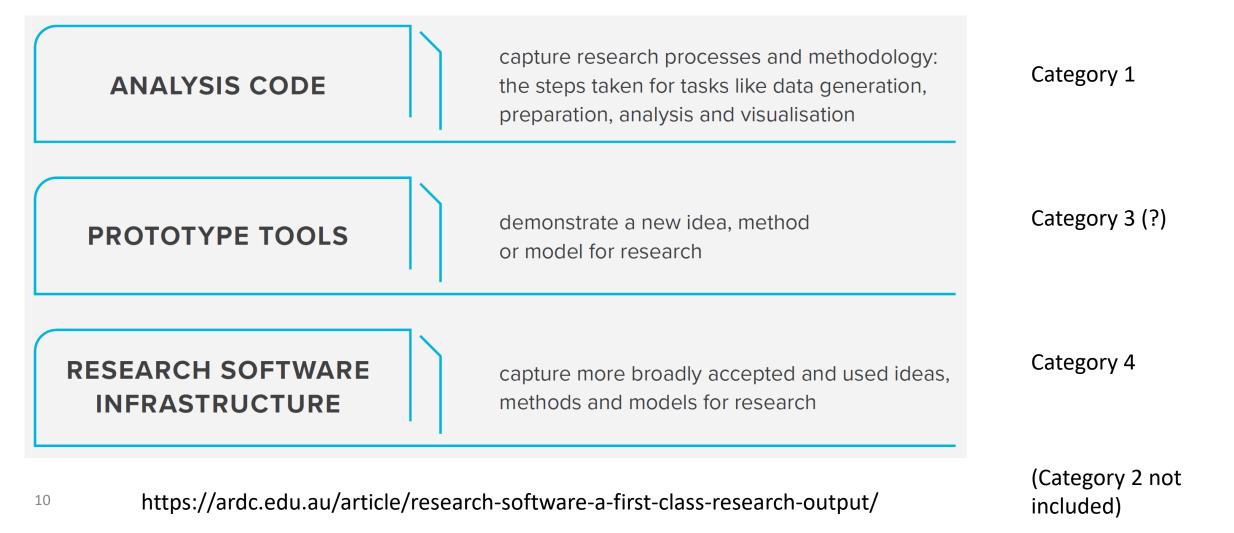
- Assign specific quality requirements to the individual categories
- Recommend appropriate software engineering methods for the individual categories
 - This is, for instance, relevant for institutional software engineering guidelines and checklists.
 - For instance, requirements engineering may be relevant for Category 4, but not for Category 1.
 - For instance, a safety analysis may be relevant for Category 2, but not for Category 1 and 3.
 - Good Practices for High-Quality Scientific Computing [Dubey 2022]
- Design appropriate teaching / education programs for the individual categories
- Explain the relation to stakeholders
- Rationale:
 - We need to understand what kinds of software we have to deal with, and their specific quality requirements

Category 1 in Earth System Sciences

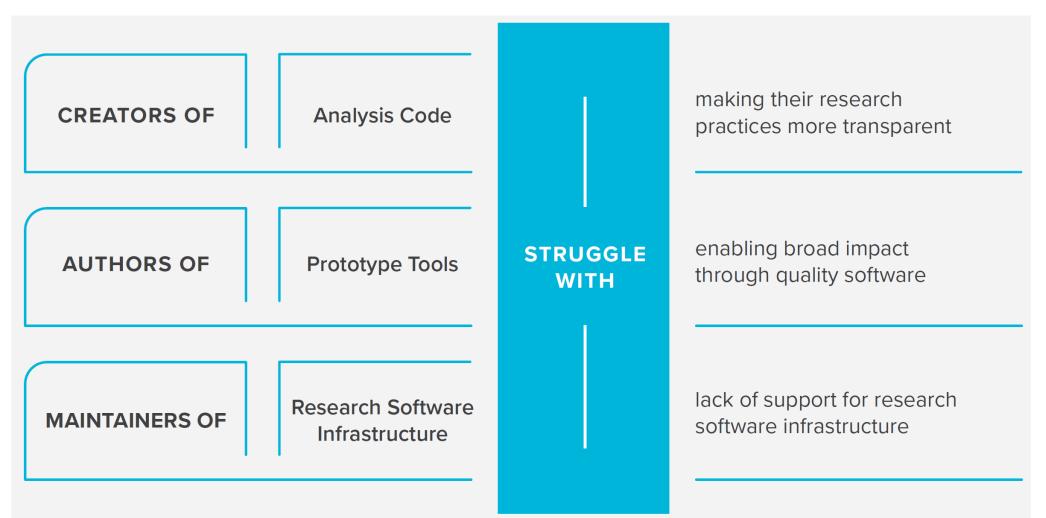
Simulation of Earth system processes by	 Earth system models (climate and weather models) and integrated assessment models sectoral models of, e.g., deep Earth processes, water on the continents, ocean processes, biogeochemical cycles and vegetation
Design, processing and analysis of	 Earth observations, e.g., processing of GRACE satellite signals to derive time series of mass change geomorphometric analyses of land surface elevations object identification in satellite images lab and field observations and experiments, e.g., luminescence dating geostatistical analysis
Integrative analysis of	 simulation models and Earth observations by, e.g., data assimilation large databases using statistical analyses or machine learning ("big data" analyses) stakeholder knowledge by, e.g. multiple-criteria decision analysis or Bayesian networks

Refinement of Category 1

- **1. Modeling, Simulation and Data Analytics** of, e.g., physical, chemical, social, or biological processes in spatio-temporal contexts.
 - 1. Numerical and agent-based modeling and simulation (in silico experiments)
 - 2. Data-driven modeling
 - 3. Observation data collection, related to Category 2 & 4
 - 4. Data science and data engineering, incl. LLMs and data generation
 - Analytics pipelines for automation and integration, coupling of models, CI/CD
 - 1. This is related to Category 4 (Infrastructure)
 - 6. Data assimilation
 - 7. Scientific visualizations


Defining the roles of research software

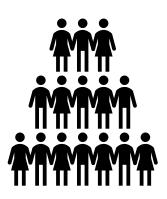
[van Nieuwpoort 2022, van Nieuwpoort and Katz 2023]


Research software is a component of our instruments	Category 2
Research software <u>is</u> the instrument	Category 1 (& 3 ?)
Research software analyses research data	Category 1.4
Research software presents research results	Category 1.6
Research software assembles or integrates existing components into a working whole	Category 1.5 & 4
Research software is infrastructure or an underlying tool	Category 4
Research software facilitates distinctively research-oriented collaboration	Category 4

Category 3 not included. "proof of concept" is mentioned, but for simulations.

A National Agenda for Research Software [Australian Research Data Commons 2022]

WHAT ARE THE CHALLENGES?



Another Categorization: Stages of Research Software, both for Developers and Users

Local Research Group

Community (incl. Non-Researchers)

CORECTORING OF CONTRACT OF CONTRACT.

User stories for the software and research lifecycle:

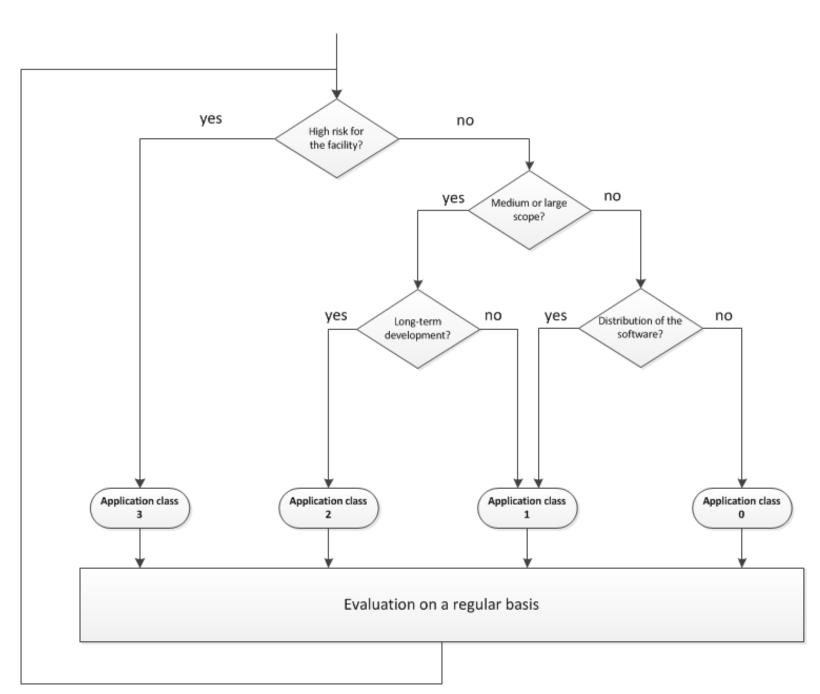
- 1. Individual creating research software for own use (e.g. a PhD student)
- 2. A research team creating an application or workflow for use within the team
- 3. A team / community developing (possibly broadly applicable) open source research software
- 4. A team or community creating a research service

Source:

- [Courbebaisse et al. 2023]
- https://eosc.eu/advisory-groups/infrastructures-quality-research-software

Application classes (https://elib.dlr.de/148645/)

Application Class 0	Small scope, personal use	 Scripts to process data for a publication. Simple administrative scripts to automate specific tasks Software that demonstrates or tests certain functions
Application Class 1	Narrow scope, beyond personal use	 Software from Bachelor/Master/PhD theses Software from smaller/shorter research projects
Application Class 2	Extended scope, wider use	 Software from longer-term research projects Software libraries, frameworks
Application Class 3	Critical software, software products	 Mission-critical software Software that is sold as a produt (with warranties) Software that serves as research infrastructure


[Schlauch et al. 2018] [Fritzsch 2023]

Categorization based on Criticality

- Safety-critical software
 - Failure results in loss of life, injury or damage to the environment;
 - Example: Railway interlocking system
- Mission-critical software
 - Failure results in failure of some goal-directed activity and/or loss of critical infrastructure;
 - Example: Spacecraft navigation system
- Business-critical software
 - Failure results in high economic losses or damage to reputation;
 - Example: Customer accounting system in a bank
- \Rightarrow Dependability
- Policy-critical software (?)

Potential risks, expected scope and lifetime determine the application class

[Schlauch et al. 2018]

Software Layers

- 4 Project-specific code
- 3 Domain-specific tools
- 2 Scientific infrastructure
- 1 Non-scientific infrastructure

Operating system

Hardware

Scripts, notebooks, Workflows, ... GROMACS, MMTK, ...

BLAS, HDF5, SciPy, ...

gcc, Python, ...

GNU/Linux, ...

x86 processor ...

Figure 1. Typical scientific software stack.

(Category 2 & 3 not included)

Category 1

Category 1

Category 4

[Hinsen 2019]

The Research Software Encyclopedia's Taxonomy

- Software to directly conduct research
 - Domain specific software
 - * Domain-specific hardware (e.g., software for physics to control lab equipment, or embedded hardware)
 - * Domain-specific optimized software (e.g., neuroscience software optimized for GPU)
 - * Domain-specific analysis software (e.g., SPM, fsl, afni for neuroscience)
 - General software
 - * Numerical libraries (includes optimization, statistics, simulation, e.g., numpy)
 - * Data collection (e.g., web-based experiments or portals)
 - * Visualization (interfaces to interact with, understand, and see data, plotting tools)

[Sochat et al. 2022], https://rseng.github.io/rseng/

- Software to support research
 - Explicitly for research
 - * Interactive development environments for research (e.g., Matlab, Jupyter)
 - * Workflow managers
 - * Provenance and metadata collection tools
 - Used for research, but not explicitly for it
 - * Databases
 - * Application programming interfaces
 - * Frameworks (to generate documentation, content management systems, etc.)
 - Incidentally used for research
 - * Operating Systems
 - * Package Managers
 - * Virtualization technologies
 - * Formatting, indexing, or other small helper libraries
 - * Scheduling and task management (for people)
 - * Version Control
 - * Text Editors and Integrated Development Environments (IDEs)
 - * Communication tools or platforms (e.g., email, video-conferencing, etc.)
 - * Infrastructure (e.g., on-prem or cloud servers used for services or research needs)
 - * Testing or software libraries

https://rseng.github.io/software/repository/github/ containers/podman/annotate-taxonomy/index.html

Software to directly conduct research >> Domain-specific software >> Domain-specific analysis software
Software to directly conduct research >> Domain-specific software >> Domain-specific hardware
Software to directly conduct research >> Domain-specific software >> Domain-specific optimized software
Software to directly conduct research >> General software >> Data collection
Software to directly conduct research >> General software >> Invertical libraries
Software to directly conduct research >> General software >> Visualization
Software to support research >> Explicitly for research >> Interactive development environments for research
Software to support research >> Explicitly for research >> Provenance and metadata collection tools
Software to support research >> Explicitly for research >> Workflow managers
Software to support research >> Incidentally used for research >> Communication tools or platforms
Software to support research >> Incidentally used for research >> Formatting, indexing, or other small helper libraries
Software to support research >> Incidentally used for research >> Infrastructure
Software to support research >> Incidentally used for research >> Operating systems
Software to support research >> Incidentally used for research >> Package Management
Software to support research >> Incidentally used for research >> Personal scheduling and task management
Software to support research >> Incidentally used for research >> Testing
Software to support research >> Incidentally used for research >> Text editors and integrated development environments
Software to support research >> Incidentally used for research >> Version control
Software to support research >> Incidentally used for research >> Virtualization technologies
Software to support research >> Used for research but not explicitly for it >> Application Programming Interfaces
Software to support research >> Used for research but not explicitly for it >> Databases
Software to support research >> Used for research but not explicitly for it >> Frameworks

Upper Level Categorization

- Commercial Software
- Research Software
- System Software
- •

Application domains:

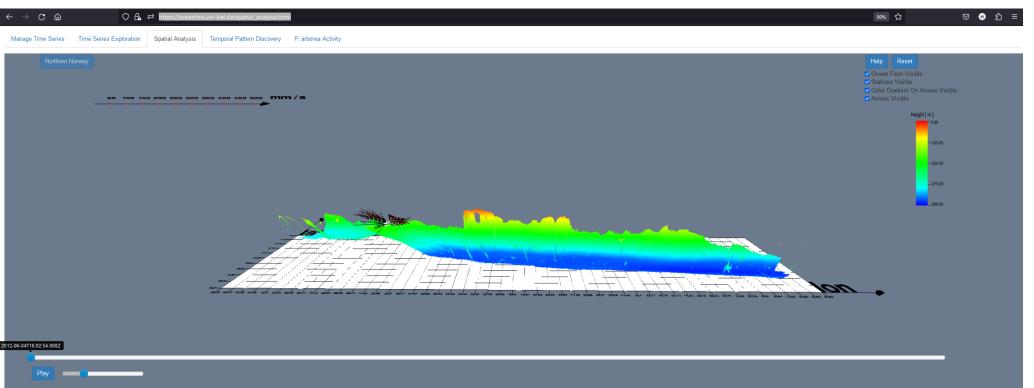
- Finance and Banking
- Healthcare
- Education
- Transportation and Logistics
- Retail and E-Commerce
- Manufacturing and Industrial
- Government and Public Sector
- Entertainment and Media

Research Software Examples

Example for Category 1 (Modeling and simulation): Modularization of Earth-system simulation software as basis for domain-specific languages

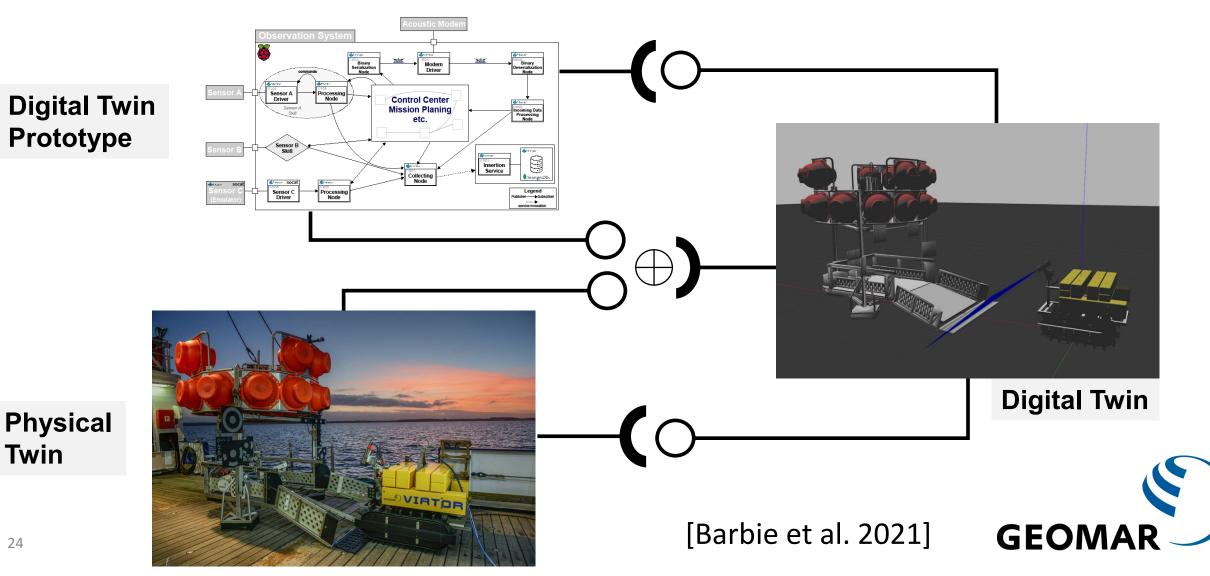
Software Modularization

How to


- improve maintainability, stability, reusability, reproducibility, ... ?
- enable scalable execution in the Cloud?
- parallelize for high performance computing?
- test for higher quality?
- achieve higher flexibility?

[Johanson & Hasselbring 2017, Claus et al. 2022, Jung et al. 2021, 2022a, 2022b]

Example for Category 1 (Data analytics): OceanTEA



Paper on the analysis results: [Johanson et al. 2017] Paper on the software architecture: [Johanson et al. 2016] Code: https://github.com/cau-se/oceantea

ozean der zukunft die kieler meereswissenschaften

Example for Category 2 (Embedded control software): Entwicklung von Software für Unterwasser-Roboter

Examples for Category 3 (Proof-of-Concept Software Prototypes): Software Impacts

https://github.com/kieker-monitoring

ExplorViz

https://github.com/ExplorViz

Kieker: A monitoring framework for software engineering research [Hasselbring and van Hoorn 2020]

ExplorViz: Research on software visualization, comprehension and collaboration [Hasselbring et al. 2020c]

The Titan Control Center for Industrial DevOps analytics research [Henning and Hasselbring 2021]

Examples for Category 3 (Proof-of-Concept Software Prototypes):

Example from Pure Mathematics

- Arbitrary precision math in computer algebra systems
 - Goals for developing research software:
 - Proof of concepts
 - Find counter examples
 - Optimization
 - General purpose software
 - Example: Oscar.jl: https://github.com/oscar-system/Oscar.jl
 - Commercial Example: Mathematica: https://www.wolfram.com/mathematica/
 - Special purpose software
 - Example: polymake: https://polymake.org

(Contributed by Lars Kastner, TU Berlin)

Examples for Category 3 (Proof-of-Concept Software Prototypes):

Automated Theorem Proving

- Lean: https://leanprover.github.io
- KeY: https://www.key-project.org

(Contributed by Lars Kastner, TU Berlin)

Examples for Category 4 (Infrastructure):

nfdi Nationale Forschungsdaten Infrastruktur

Outlook: RSE Research

Research Software Engineering

Software Engineering Research

Research Software Engineering Research aims at understanding and improving how software is developed for research.

RSE Research, in short.

See also: https://github.com/NLeSC/RSE-research [Lamprecht et al. 2022]

References

[Australian Research Data Commons 2022] Australian Research Data Commons: "A National Agenda for Research Software", Zenodo. DOI https://doi.org/10.5281/zenodo.4940273

- [Barbie et al. 2021] Barbie, A., Pech, N., Hasselbring, W., Flögel, S., Wenzhöfer, F., Walter, M., Shchekinova, E., Busse, M., Türk, M., Hofbauer, M. und Sommer, S.: "Developing an Underwater Network of Ocean Observation Systems with Digital Twin Prototypes A Field Report from the Baltic Sea." IEEE Internet Computing. 2021. DOI https://doi.org/10.1109/MIC.2021.3065245
- [Chue Hong 2022] N. P., Chue Hong, et al. (2022). FAIR Principles for Research Software version 1.0. (FAIR4RS Principles v1.0). Research Data Alliance. DOI https://doi.org/10.15497/RDA00068
- [Claus et al. 2022] Claus, M., Gundlach, S., Hasselbring, W., Jung, R., Rath, W. und Schnoor, H.: "Modularizing Earth system models for interactive simulation." Informatik Spektrum, 45. pp. 300-303. 2022, DOI https://doi.org/10.1007/s00287-022-01490-z
- [Courbebaisse et al. 2023] G. Courbebaisse, B. Flemisch, K. Graf, U. Konrad, J. Maassen, R. Ritz: "Research Software Lifecycle", Zenodo, 2023. DOI https://doi.org/10.5281/zenodo.8324828
- [Döll et al. 2023] Döll, P., Sester, M., Feuerhake, U., Frahm, H., Fritzsch, B., Hezel, D.C., Kaus, B., Kolditz, O., Linxweiler, J., Müller Schmied, H., Nyenah, E., Risse, B., Schielein, U., Schlauch, T., Streck, T., Van den Oord, G.: "Sustainable research software for high-quality computational research in the Earth System Sciences: Recommendations for universities, funders and the scientific community in Germany". 2023, DOI https://doi.org/10.23689/fidgeo-5805
- [Dubey 2022] A. Dubey: "Good Practices for High-Quality Scientific Computing," in Computing in Science & Engineering, vol. 24, no. 6, pp. 72-76, Nov.-Dec. 2022. DOI https://doi.org/10.1109/MCSE.2023.3259259
- [Felderer et al. 2023] Felderer, M., Goedicke, M., Grunske, L., Hasselbring, W., Lamprecht, A. L. und Rumpe, B.: "Toward Research Software Engineering Research". 2023. DOI https://doi.org/10.5281/ZENODO.8020525.
- [Fritzsch 2023] Fritzsch, B.: "Richtlinie zur Entwicklung und zum Umgang mit Forschungssoftware am AWI", EPIC, 2023. URL https://epic.awi.de/id/eprint/57800/
- [Fuller and Millett 2011] S.H. Fuller and L.I. Millett, "Computing Performance: Game Over or Next Level?," Computer, vol. 44, no. 1, 2011, pp. 31–38. DOI https://doi.org/10.1109/MC.2011.15
- [Goltz et al., 2015] U. Goltz et al., "Design for Future: Managed Software Evolution," Computer Science Research and Development, vol. 30, no. 3, 2015, pp. 321–331. DOI https://doi.org/10.1007/s00450-014-0273-9

References

- [Gruenpeter et al. 2021] Gruenpeter, M., Katz, D. S., Lamprecht, A.-L., Honeyman, T., Garijo, D., Struck, A., Niehues, A., Martinez, P. A., Castro, L. J., Rabemanantsoa, T., Chue Hong, N. P., Martinez-Ortiz, C., Sesink, L., Liffers, M., Fouilloux, A. C., Erdmann, C., Peroni, S., Martinez Lavanchy, P., Todorov, I., Sinha, M.: "Defining Research Software: a controversial discussion". 2021. DOI https://doi.org/10.5281/zenodo.5504016
- [Hasselbring et al. 2020a] W. Hasselbring, L. Carr, S. Hettrick, H. Packer, T. Tiropanis: "Open Source Research Software". In: Computer, 53 (8), pp. 84-88. 2020. DOI https://doi.org/10.1109/MC.2020.2998235
- [Hasselbring et al. 2020b] W. Hasselbring, L. Carr, S. Hettrick, H. Packer, T. Tiropanis: "From FAIR Research Data toward FAIR and Open Research Software", it - Information Technology, 2020. DOI https://doi.org/10.1515/itit-2019-0040
- [Hasselbring et al. 2020c] Hasselbring, W., Krause, A., Zirkelbach, C.: "ExplorViz: Research on software visualization, comprehension and collaboration." In: Software Impacts, 6, 2020. DOI https://doi.org/10.1016/j.simpa.2020.100034.
- [Hasselbring and van Hoorn 2020] Hasselbring, W., van Hoorn, A.: "Kieker: A monitoring framework for software engineering research." In: Software Impacts, 5, 2020. pp. 1-5. DOI https://doi.org/10.1016/j.simpa.2020.100019
- [Henning and Hasselbring 2021] Henning, S., Hasselbring, W.: "The Titan Control Center for Industrial DevOps analytics research," In: Software Impacts, 7, 2021. DOI https://doi.org/10.1016/j.simpa.2020.100050
- [Hinsen 2019] K. Hinsen, "Dealing With Software Collapse," Computing in Science Engineering, vol. 21, no. 3, pp. 104 108, May 2019, DOI 10.1109/MCSE.2019.2900945
- [Johanson et al. 2016] A. Johanson, S. Flögel, C. Dullo, W. Hasselbring: "OceanTEA: Exploring Ocean-Derived Climate Data Using Microservices". In: Sixth International Workshop on Climate Informatics (CI 2016), 2016, DOI http://dx.doi.org/10.5065/D6K072N6
- [Johanson et al. 2017] A. Johanson, S. Flögel, C. Dullo, P. Linke, W. Hasselbring: "Modeling Polyp Activity of Paragorgia arborea Using Supervised Learning", In: Ecological Informatics, 39. pp. 109-118. 2017, DOI https://doi.org/10.1016/j.ecoinf.2017.02.007
- [Johanson & Hasselbring 2017] A. Johanson, W. Hasselbring: "Effectiveness and efficiency of a domain-specific language for high-performance marine ecosystem simulation: a controlled experiment", In: Empirical Software Engineering 22 (8). pp. 2206-2236, 2017. DOI https://doi.org/10.1007/s10664-016-9483-z
- [Johanson & Hasselbring 2018] A. Johanson, W. Hasselbring: "Software Engineering for Computational Science: Past, Present, Future", In: Computing in Science & Engineering, 2018. DOI https://doi.org/10.1109/MCSE.2018.021651343

References

- [Jung et al. 2021] R. Jung, S. Gundlach, S. Simonov, W. Hasselbring: "Developing Domain-Specific Languages for Ocean Modeling". In: Software Engineering 2021 Satellite Events, http://ceur-ws.org/Vol-2814/
- [Jung et al. 2022a] R. Jung, S. Gundlach, W. Hasselbring: "Software development processes in ocean system modeling." In: International Journal of Modeling, Simulation, and Scientific Computing, 13 (02). 2022, DOI https://doi.org/10.1142/S1793962322300023.
- [Jung et al. 2022b] R. Jung, S. Gundlach, W. Hasselbring: "Thematic domain analysis for ocean modeling." In: Environmental Modelling & Software, 150. p. 105323. 2022, DOI https://doi.org/10.1016/j.envsoft.2022.105323.
- [Lamprecht et al. 2020] A.-L. Lamprecht et al.: "Towards FAIR principles for research software." In: Data Science 3, 1 (June 2020), 37–59. DOI https://doi.org/10.3233/ds-190026
- [Lamprecht et al. 2022] A.-L. Lamprecht et al.: "What Do We (Not) Know About Research Software Engineering?." In: Journal of Open Research Software, 10(1). 2022. DOI https://doi.org/10.5334/jors.384
- [Merali 2010] Z. Merali, "Computational Science: Error, Why Scientific Programming Does Not Compute," Nature, vol. 467, no. 7317, 2010, pp. 775–777, DOI https://doi.org/10.1038/467775a
- [van Nieuwpoort 2022] R. van Nieuwpoort: "What does Research Software look like?", Zenodo, 2022. DOI https://doi.org/10.5281/zenodo.7347700
- [van Nieuwpoort and Katz 2023] R. van Nieuwpoort and D.S. Katz: "Defining the roles of research software", Front Matter, 2023. DOI https://doi.org/10.54900/9akm9y5-5ject5y
- [Randell 2018] B. Randell: 50 years of Software Engineering or The View from Garmisch. May 2018, DOI https://doi.org/10.48550/arXiv.1805.02742
- [Reussner et al. 2019] R. Reussner, M. Goedicke, W. Hasselbring, B. Vogel-Heuser, J. Keim, L. Märtin, L. (Eds.): "Managed Software Evolution", Springer, 2019. DOI https://doi.org/10.1007/978-3-030-13499-0
- [Schlauch et al. 2018] T. Schlauch, M. Meinel, C. Haupt: "DLR Software Engineering Guidelines", Zenodo, 2018. DOI https://doi.org/10.5281/zenodo.1344611
- [Sochat et al. 2022] Sochat, V., May, N., Cosden, I., Martinez-Ortiz, C. and Bartholomew, S., 2022. The Research Software Encyclopedia: A Community Framework to Define Research Software. Journal of Open Research Software, 10(1). DOI https://doi.org/10.5334/jors.359